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A B S T R A C T

Assembly complexity in manual processes has been widely addressed over the years in manufacturing-related 
literature. The concept of complexity indeed is linked to the cognitive and physical effort required on behalf 
of the human operator in completing the assembly process and is directly linked to the occurrence of process 
failures and inefficiencies. In the light of the introduction of novel technologies such as collaborative robotics 
such paradigm should be revised. This paper presents a proposal for a complexity model, i.e., “C–HRC model”, 
for Human-Robot Collaboration assembly processes. C–HRC model provides a multidimensional framework and 
a practical tool for analysing the complexity of collaborative assembly processes performed by humans supported 
by collaborative robots. In this situation, the collaboration with the robot may require an additional effort from 
the human operator, resulting in a more complex activity and thus more error prone. In this regard, the C–HRC 
model integrates insights from multiple disciplines to provide an overview of collaborative assembly complexity 
based on four layers: product complexity, assembly complexity, interaction complexity and collaboration 
complexity. The conceptual foundation of the C–HRC model is thoroughly detailed and supported by a review of 
the relevant literature. Hence, the paper uses the complexity formulation proposed by Samy and ElMaraghy as a 
basis to provide a quantitative approach. The model is then applied to practical case studies to demonstrate its 
application and illustrate how it can enhance the understanding of effective human-robot collaboration. This 
provides process designers with a practical tool to support design and improve collaborative assembly processes.

List of acronyms
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
DFA Design for Assembly
C–HRC Complexity of Human-Robot Collaboration
DoIR Density of Interaction Ratio
ToCR Time of Collaboration Ratio

1. Introduction

In modern manufacturing, the integration of robots into assembly 
processes represents a significant shift towards more innovative and 
efficient production methods. Human-Robot collaboration (“HRC”) 
indeed has widely spread in industrial environments in the last few years 
[1]. Specifically, this change enabled by the introduction of collabora
tive robots, i.e., robots capable of working closely with human operators 

commonly called cobots, marks a pivotal evolution in the industrial 
landscape [2–5]. Industry 5.0 seeks to harmonise the strengths of human 
creativity and intuition with the precision, consistency and repeatability 
of robotic systems, creating a collaborative environment where both 
agents contribute optimally [6]. However, this integration presents 
complex challenges that must be addressed in order to realise the full 
potential of such collaborations. Understanding and managing the 
complexity inherent in these interactions is a necessity for the devel
opment of efficient, adaptive and safe manufacturing systems. The 
literature on human-robot collaboration has focused primarily on opti
mising task allocation between humans and robots [7,8] and on 
ensuring safety protocols to facilitate effective human-robot teamwork 
[9,10]. However, plenty of other variables should be taken into account 
in the assessment of what the authors called “collaborative assembly 
complexity”. The concept of complexity is common in assembly related 
literature [11,12]. This is a very broad concept involving all those as
pects that may affect cognitive effort on behalf of the human operator in 
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performing an assembly process [13]: product characteristics, variety of 
parts, ergonomics, workstation layout are all potential influential as
pects of assembly complexity [14–18]. Increased cognitive effort, 
indeed, may lead to a greater occurrence of errors and thus to in
efficiencies in manufacturing. Given the spread of novel technologies 
like collaborative robots in manufacturing, there is a need for a 
comprehensive framework that can capture and analyse the diverse and 
dynamic elements of complexity in collaborative assembly processes. 
This study proposes the development of a model to evaluate complexity 
in Human-Robot Collaborative Assembly Processes (i.e., “C–HRC”). 
The model tries to identify the various levels of complexity and provide a 
quantitative approach to assess them. It identifies four layers of 
complexity: product complexity, assembly complexity, interaction and 
collaboration complexity. In addition, in this work the authors leveraged 
the mathematical formulation of assembly complexity developed by 
Samy and ElMaraghy [16] and adapted it to specifically assess collab
orative assembly processes. The model is then exemplified through the 
analysis of a small case-study. The proposed C–HRC model introduces a 
novel conceptual framework that defines the various aspects of assembly 
complexity in human-robot collaboration. By providing designers with a 
practical and quantitative tool, this model can be further used for 
effective task allocation, error prediction and process optimisation, 
improving the efficiency and quality of HRC assembly processes. The 
paper is organised as follows: Section 2 presents a literature review on 
human-robot collaboration and assembly complexity. In Section 3 the 
collaborative assembly complexity is conceptually addressed and in 
Section 4 the proposed approach is described. Section 5 shows the 
implementation of the model to a small case study. Section 6 summarises 
the main contributions and limitations of the C–HRC model.

2. Literature review

The emergence of Industry 5.0 marks a significant evolution in the 
industrial landscape, shifting from Industry 4.0′s automation-centric 
focus to a more integrated, human-centric approach [19]. This new 
paradigm emphasises human-robot collaboration, i.e., that synergy be
tween humans and robots aimed at creating a collaborative environment 
where both human workers and robots can contribute simultaneously 
with their unique capabilities [6]. Prior to examining the particulars of 
human-robot collaboration in manufacturing, it is important to intro
duce the concept of human-robot interaction (HRI). HRI encompasses 
the study and design of interactions between humans and robots, with 
the objective of developing systems that facilitate effective, efficient, 
and natural communication and cooperation between human users and 
robotic systems. Goodrich and Schulz’s comprehensive review [20] 
identifies the main issues, key aspects and challenges of HRI. Their re
view provided a cohesive narrative of human-robot interaction bridging 
various applications and perspectives to promote a unified under
standing of HRI. Bartneck et al. [21] highlighted the importance of 
standardized measurement instruments in HRI. They also focused on key 
concepts such as anthropomorphism, animacy, likeability, perceived 
intelligence, and safety. Leite et al. [22] explored the effects of long-term 
interactions between users and social robots. Their comprehensive re
view underscores the importance of sustained engagement in HRI, 
identifies key robot characteristics that facilitate these interactions, and 
summarises findings from existing long-term studies. Sheridan [23] 
examines the status quo of HRI, outlining the transition of robots from 
tools for handling hazardous materials to entities capable of working 
under human supervisory control in a variety of domains. By identifying 
key challenges for human factors research in HRI, Sheridan’s reviewed 
the diverse applications of HRI, ranging from industrial tasks to social 
interactions. Generally, the principles of HRI represent also the basis of 
human-robot collaboration (HRC) in manufacturing, with the aim of 
integrating robots and human workers to enhance productivity, safety 
and efficiency. In human-robot collaboration human workers and robots 
share workspace and goals each contributing with their own skills [24]. 

One of the main challenges in implementing human-robot collaboration 
is developing technologies that enable smooth and natural interactions. 
Wang et al. [25] highlighted the importance of the communicative 
interface between robots and humans in achieving a symbiotic HRC. 
Inkulu et al. [26] outlined the prospects and key challenges associated 
with HRC. Integrating HRC into manufacturing requires the removal of 
traditional physical barriers separating human and robot workspaces. 
This makes safety a primary concern in this field. To overcome these 
issues, the introduction of standards such as ISO 10218-1, ISO 10218-2 
and ISO/TS 15066 identified the main risks associated with the use of 
industrial robots in manufacturing environments and allowed for 
greater robot autonomy in close proximity to humans. These environ
ments require sophisticated sensors and control algorithms to maintain 
safety and efficiency. Another common concept that is directly related to 
safety is trust [27]. Maurtua et al. [1] emphasised the need to develop 
trust between workers and robots to facilitate seamless collaboration. 
However, when dealing with HRC, focusing only on safety would result 
in a limited approach [4,28]. In pursuing a smooth collaboration be
tween humans and robots, a lot of different aspects should be included 
and, thus, a more comprehensive analysis should be pursued [4]. To 
address this situation, in which so many different variables are involved, 
the authors used the concept of complexity. Assembly complexity is a 
very well-known concept in manufacturing, as many studies proved its 
relationship with process failures and product errors [11,12,29]. In the 
context of HRC, the complexity concept goes beyond traditional aspects 
of product and process defects to include the dynamics of human-robot 
collaboration [30–32]. This expanded view of complexity requires 
detailed exploration to fully understand its impact and to develop stra
tegies for managing it.

2.1. Assembly complexity

Many quantitative models have been developed to objectively assess 
the complexity of assembly processes. A significant area of research 
relates assembly complexity directly to the complexity of the product 
itself, encompassing its dimensional, geometrical and structural attri
butes. Many of these models are based on design for assembly (DFA) 
principles, as highlighted in the work of Boothroyd and Alting [33] and 
of Boothroyd [34]. Hinckley’s [35] pioneering work introduced a 
complexity factor based on product assembly times. Similarly, Shibata 
[36] and later Su et al. [37] associated assembly complexity to both 
physical product characteristics and to standard assembly times. More 
recently, Alkan [14] proposed a new method for measuring assembly 
complexity that combines standard assembly times with DFA theory, 
building on a more generalised product complexity model basing on the 
work by Sinha [38,39] which compares complexity of products to that of 
molecular structures. The relationship between product complexity and 
assembly times was also investigated by Verna et al. [18,40] and Sudhoff 
et al. [41] who further adapted these models and used them to predict 
product failures and establish a link between complexity measures and 
assembly times.

Another common way of assessing assembly complexity is to apply 
the principles of information theory [42] to products, production pro
cesses and systems. These approaches are based on the idea that 
complexity and challenges depend on the uncertainty in the assembly 
process. El-Maraghy and Urbanic [43,44] first introduced an 
entropy-based method, the "MCAT" (Manufacturing Complexity 
Assessment Tool), which links manufacturing complexity to the quan
tity, variety and content of information managed [45]. Fujimoto et al. 
[46] and Zhu et al. [47] also used information entropy to deal with 
manufacturing complexity arising from product variety. Ameri 
et al. [48] combined information and graph theories to assess product 
design complexity. MCAT was later combined with DFA principles for 
product assembly complexity assessment by Samy and ElMaraghy 
H. [16], and subsequently used for a comprehensive manufacturing 
system complexity metric [49,50]. Wang and Hu [51] developed a 

M. Capponi et al.                                                                                                                                                                                                                               Robotics and Computer-Integrated Manufacturing 95 (2025) 103026 

2 



complexity metric that considers the uncertainty of operator choices in 
different assembly system configurations, which was later used to 
reduce complexity in mixed model assembly systems [52]. Zeltzer et al. 
[53] introduced an entropy-based complexity measure that accounts for 
the variability of task durations in mixed assembly lines. More recently, 
Liu et al. [54] developed an information entropy measure to optimise 
assembly line balancing in the face of demand uncertainty.

The complexity of assembly processes as perceived by humans can be 
influenced by various factors, such as knowledge, personal experience, 
required skills, and the cognitive and physical effort involved. In this 
regard a qualitative approach was followed by Mattsson et al. [55–57] 
who identified five primary factors that affect workers’ perception of 
assembly complexity: product variants, layout, work content, tools, and 
information. The authors developed a series of statements related to 
each factor, which workers evaluated on a five-point scale. Similarly, 
Falck et al. [58] identified 16 fundamental complexity criteria that are 
further assessed by expert teams to provide a qualitative overall 
complexity rating on a five-level scale.

All the studies presented here provide a method to assess complexity 
in manual assembly processes. To the best of authors’ knowledge, there 
is a lack of literature in the adaptation of these concepts in HRC as
sembly processes.

3. Conceptual definition of a collaborative assembly complexity 
model

In the changing landscape of Industry 5.0, the integration of 
collaborative robots requires a re-evaluation of traditional complexity 
models to account for the challenges and opportunities presented by 
human-robot collaboration. It’s also worth underlining that complexity 
of assembly processes in manufacturing is significantly influenced by the 
inherent characteristics of both humans and robots. Human factors, 
divided into categories such as skill level, ergonomics, adaptability and 
psychological attitudes towards robots, play a crucial role in deter
mining the complexity of these processes. Similarly, robot complexity, 
characterised by technical capabilities, sensing and perception systems, 
safety measures and integration capabilities, adds another layer of 
complexity to assembly operations. These aspects are essential to ensure 
efficient, safe and productive human-robot collaboration in 
manufacturing environments. However, such features will not be pre
liminarily addressed in this work.

The C–HRC Model underlines the need for a comprehensive 
approach to complexity by considering four critical layers: product 
complexity, assembly complexity, interaction complexity and collabo
ration complexity (see Fig. 1). These layers combined together lead to a 

structured concept of “collaborative assembly complexity”. In detail: 

• Product complexity refers to the features of the product itself, 
including the number and variety of components, their geometrical 
and dimensional features, the nature of their interconnections, and 
the degree of customisation required. This layer represents the 
foundation of the complexity model and reflects the fundamental 
challenges that must be addressed in any manufacturing process.

• Assembly complexity deals with the difficulties encountered during 
the actual assembly process. This includes factors such as the 
sequence of assembly, the precision required to join parts, the 
handling and positioning of components, and the overall efficiency 
of the assembly line. Assembly complexity is a critical layer that 
transforms product specifications into a functional entity.

• Interaction complexity refers to any scenario in which humans and 
robots interact, covering a wide range of interactions from simple 
one-way commands to complex two-way communication. It covers 
the fundamentals of how humans communicate, control and respond 
to robots in different environments, focusing on the interface and 
communication protocols used to facilitate these interactions [23].

• Collaboration complexity extends the previous concept of interaction 
complexity. It implies a more integrated and cooperative interaction, 
where both the human and the robot contribute with their unique 
capabilities to the task. Therefore it is characterised by shared goals, 
times and spaces that also lead to common decision making, adaptive 
roles and mutual adaptation of actions [24].

This model was developed through several focus groups with re
searchers specialising in human-robot collaboration in assembly. These 
discussions focused on identifying the key dimensions necessary to 
assess the complexity of HRC assembly. The model was also informed by 
insights gained from authors’ previous experimental experience, where 
participants frequently highlighted the challenges faced when interact
ing and collaborating with cobots. The first two layers of the model 
(product and assembly complexity) have already been extensively 
studied in the literature on manual assembly. When the assembly pro
cess is carried out in collaboration with the robot, two further layers of 
interaction and collaboration complexity are added. The combination of 
these 4 layers leads to the concept of collaborative assembly complexity, 
as shown in Fig. 2.

3.1. Product complexity

In the context of collaborative assembly, product complexity strictly 
refers to the characteristics of the items being assembled [11,48,59]. 
This concept can be broken down into three main macro-features: 
design, variety, and materials. In detail they are: 

• Design encompasses the fundamental architecture of a product, 
including the integration of its components. The design of a product 
drives its complexity through the number of parts, their in
terdependencies, as well as the shape and size of the parts. Therefore, 
complex designs with intricate geometries and tight tolerances 
necessitate precise assembly and coordination [16,34,37,40,60–62]

• The variety of a product refers to the range of options and variations 
available. High variability in design and components, including 
unique parts and customisation options, leads to a more complex 
assembly process. Therefore, greater variability leads to greater 
cognitive effort to complete successfully the assembly. In light of 
this, the process should be adaptable to manage these model varia
tions and modular components, which heightens the potential for 
errors [16,46,63,64].

• Materials represent another crucial variable in product complexity. 
Complexity in this category relates to the fragility and weight of the 
materials. Delicate materials demand careful handling to avoid 
damage, which complicates the assembly task. Materials can also Fig. 1. The four layers of the C–HRC model.
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impose specific handling and joining requirements, like strict toler
ances or the need for cleanroom conditions [16,34,65,66].

Hence, product complexity is a function of design aspects, the variety 
of components and customisation options, and the features of materials 
used. These factors can increase the risk of errors and influence the 
manufacturability of a product. Assembly strategies must therefore be 
specialised, possibly requiring sophisticated equipment or skilled la
bour. Understanding these complexity drivers is crucial for optimising 
manufacturing operations and enhancing product quality.

3.2. Assembly complexity

In the literature, assembly complexity is often associated with the 
cognitive and physical load on the agents involved while performing the 
assembly process [11,16,44,63,67]. In this work, assembly complexity 
specifically refers to the challenges faced by either a human or a robot 
during the assembly process. According to DFA (i.e., “Design For As
sembly), an assembly process can be broken down into two major cat
egories: handling and joining activities [16,34]. Handling in assembly 
processes is defined as the physical manipulation of parts or components 
within the manufacturing environment. This encompasses a range of 
activities, including picking, placing, sorting, and orienting items in 
preparation for the next stage of the assembly process. The precision and 
care required to avoid damage is often dependent on the characteristics 
of the parts themselves, such as their size, weight, and fragility. Joining 
refers to tasks in which two or more parts are put together to form a 
more complex unit and it encompasses a multitude of activities, 
including welding, soldering, gluing, screwing, and the assembly of 
parts using a variety of techniques. Hence, assembly complexity is 
strictly tied to product complexity. For example, greater variety of parts 
can increase the cognitive effort required by the operator, leading to 
more difficult and error-prone assembly processes [16]. In addition, it 
was assumed that complexity of an assembly process, regardless of the 
agent performing it, can be characterised by: 

• Tolerances and precision requirements: Different parts may require 
precise alignment or special tools for joining, which can be complex 

when tolerances are tight. Hence, errors in meeting these tolerances 
can lead to product failures or to the need for rework [16,68].

• Assembly sequence and planning: The order in which components 
are assembled can have a significant impact on the difficulty of the 
process. An inadequate sequence can cause inefficiencies, increased 
labour or even the need to disassemble parts of the product to correct 
errors [12,64,69].

• Tooling and equipment: The variety and capacity of assembly tools 
and equipment available can introduce complexity. This includes the 
need for specialised tools for certain tasks and the efficiency with 
which they can be used [44,56,70].

3.3. Interaction complexity

In the field of collaborative assembly, human-robot interaction rep
resents one of the central aspects. The research on human-robot inter
action has seen significant advancements in the last years, especially in 
manufacturing [2,23]. From a technological point of view, many at
tempts have been made to make human-robot interaction smoother and 
intuitive. Currently, human and robots can interact in different ways 
[71]: 

• Audio interfaces: based on verbal communication between humans 
and robots.

• Visual modality: the robot can interpret gestures or facial 
expressions.

• Haptic modality: the robot is able to react to touch and apply force to 
human operator.

• Kinesthetic modality: it refers to the ability of the robot to perceive 
movements and act consequently.

Audio modality provides a natural interaction but can be difficult to 
implement in noisy manufacturing environments. Visual modality, on 
the other hand, allows operators to direct robot actions using predefined 
movements, which can be intuitive but may require extensive training 
and precise motion tracking systems. Haptic feedback provides tactile 
cues to the operator during interaction but requires sophisticated 
hardware integration. In general, each of these techniques has its 

Fig. 2. A conceptual framework of the collaborative assembly complexity model (C–HRC model).

M. Capponi et al.                                                                                                                                                                                                                               Robotics and Computer-Integrated Manufacturing 95 (2025) 103026 

4 



strengths and weaknesses, depending on the specific task to perform, the 
environmental conditions, and the operator’s preference. In addition, 
it’s also worth noting that the recent development of augmented reality 
(“AR”) and mixed reality (“MR”) devices represents an opportunity to 
enhance human-robot interaction [72]. Subramanian et al. [73] pre
sented a framework that highlights the essential components of AR 
required to advance HRI. The framework also details effective strategies 
for the continuous evaluation of AR systems in the context of HRI. 
Tadeja et al. [74] implemented an AR-based solution to enhance 
communication between human operator and collaborative robot in 
performing an assembly process. Similarly, Hietanen et al. [75] pro
posed a depth sensor-based workspace monitoring model and an inter
active augmented reality (AR) user interface designed to ensure safe 
human-robot collaboration (HRC). However, AR/MR technology, 
albeit promising, may not yet be mature enough to be used by operators 
in daily activities in real work scenarios.

In addition to technology, many tools have been also developed over 
the years to evaluate the effectiveness of human-robot interaction [76]. 
For example, Steinfeld et al. [77] developed a set of metrics to quanti
tatively assess human-robot interaction. All these metrics together can 
guide the design of efficient and effective human-robot interaction. 
Young et al. [78] presented a new view of social interaction with robots 
called the “holistic interaction experience” and introduced three key 
perspectives for examining these interactions: visceral factors, social 
mechanics, and social structures. Apraiz et al. [79] presented the 
HEUROBOX tool, a newly developed set of heuristics designed to assist 
practitioners and researchers in the evaluation of human-robot systems 
in industrial settings. The HEUROBOX tool organises design guidelines 
and methodologies into a logical list of heuristics for human-robot 
interaction, categorised into four key areas: safety, ergonomics, func
tionality and interfaces. In general, methodologies in the literature are 
often based on the use of numerous metrics, which are not always easy to 
calculate.

Understanding human-robot interaction thus is critical to analyse the 
dynamics of collaborative processes, which can significantly influence 
the overall complexity and efficiency of the assembly, resulting on 
greater cognitive effort on behalf of the human operator [30]. In this 
regard, the study of interaction processes - whether between humans or 
between humans and robots - reveals the pivotal role of both verbal and 
non-verbal communication [80,81]. Therefore, communication fre
quency and modality play a key role in interaction processes [82]. As 
technology advances, the field of Human-Robot Interaction (HRI) in
troduces additional complexities, particularly in terms of communica
tion challenges [20].

Unlike human-human interaction, when interacting with a robot, 
one has to cope with the lack of shared social and cultural 
understanding.

Therefore, interaction complexity causing greater cognitive effort on 
the human operator may be due to: 

• Frequency of interaction: regular and frequent interaction between 
humans and robots can increase cognitive load, especially when 
these interactions require constant attention. For example, in envi
ronments where robots provide updates or require instructions at a 
high frequency, humans need to maintain a high level of awareness 
and continuous engagement. This can be challenging and leading to 
cognitive fatigue [83]

• Modalities of interaction: the modalities of communication between 
humans and robots can be auditory, visual, haptic or a combination 
of these and they have a significant impact on cognitive effort. 
Complex modalities that require the interpretation of sophisticated 
signals or extensive input can increase the complexity of interactions. 
For example, a robot that communicates status updates through a 
complex dashboard requires users to interpret multiple streams of 
information simultaneously, increasing cognitive demands. 
Conversely, simplifying these modalities, such as using simple verbal 

commands or intuitive gestural interfaces, can help reduce cognitive 
load and make interactions more efficient [71,83]

In order to provide a first quantitative proxy of interaction 
complexity, the authors focused mainly on the frequency of interaction 
and developed a novel indicator called Density of Interaction Ratio.

3.3.1. Density of interaction ratio
Density of Interaction Ratio, henceforth referred as “DoIR”, is based 

on the idea that the greater the number of interactions of a human 
operator with a robot, the greater the cognitive effort required. In this 
work, the number of interactions has been assessed with the number of 
“role-switching interactions”. The concept of role switching in human- 
robot collaboration has been previously addressed by other studies 
[84,85] and it is related to the dynamics of task allocation in a collab
orative process where humans and robots alternate as active agents in a 
process. The indicator proposed is based on the notion that each instance 
of required interaction, whether it involves physical actions like pressing 
a button or communication tasks such as signalling readiness, is integral 
to the continuation and effectiveness of the collaborative process. 
Hence, DoIR can be mathematically expressed as follows: 

DoIR =
nrs

Nt
(1) 

Where: 

• nrs ∈ [0;Nt − 1] represents the numbers of role switching between 
human and robot and vice versa. If human and robot can perform 
two tasks in parallel, these will not be considered for the computa
tion of DoIR.

• Nt represents the number of elementary tasks of the assembly 
process.

The mathematical codomain of this indicator is 
[

0, Nt − 1
Nt

]

, where 

0 indicates a process totally performed by a single agent, while the 
maximum value (i.e., Nt − 1

Nt
< 1) represents a situation where there is a 

role switching between human and robot for each elementary task. As an 
example, suppose to have a collaborative assembly process composed of 
“pick and place” and “joining” tasks. The first refer to picking the correct 
component (Ci) and placing them in suitable positions for the subse
quent joining tasks, e.g., screwing processes. Table 1 shows the alloca
tion of these tasks between robot and humans and the respective times, 
for a total cycle time (“Tc˝) of 60 s.

The assembly process is graphically represented in Fig. 3.
With reference to the simple example of Table 1 and Fig. 3, there are 

4 role switching between human and robot (i.e., nrs = 4). The total 
number of elementary tasks is 7 (i.e., Nt = 7), hence DoIR = nrs

Nt
= 0.57.

Generally, a higher DoIR indicates a more complex system where the 
human operator is required to closely monitor and communicate with 
the robot, resulting in a higher cognitive effort on behalf of the human 
operator. Conversely, a lower DoIR may suggest that the robot is per
forming more autonomously, potentially reducing the cognitive load on 
the human operator, but also possibly decreasing the human’s 

Table 1 
List of elementary tasks and the related allocations and assembly times.

ID Elementary task Allocation 
(H for human and R for robot)

Time [s]

A1 Pick and place C1 R 5
A2 Pick and place C2 H 3
A3 Screwing C1 and C2 H 15
A4 Pick and place C3 H 5
A5 Pick and place C4 R 10
A6 Screwing C4 on C1 H 15
A7 Pick and place the final product R 10
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situational awareness and engagement in the collaborative process. This 
may also designate situation in which there is no collaboration between 
human and robot. However, in collaborative processes, human-robot 
interactions are driven by shared goals, rather than merely for the 
sake of interaction. This perspective requires the introduction of a fourth 
layer, called “collaboration complexity”.

3.4. Collaboration complexity

The collaboration complexity between human and robot goes 
beyond interaction complexity by introducing shared goals, spaces and 
times that require mutual adaptation and coordination. Collaboration 
requires working together towards a common goal, involving both 
parties to continuously adapt and coordinate their actions [4,24]. The 
resulting cognitive effort increases as the human operators need to un
derstand not only their own role and tasks, but also how their actions 
influence the shared activity. In analysing collaborative work among 
humans, Patel et al. [82] identified the main factors, and contextual 
sub-factors, that influence a collaborative work environment, and some 
of them can be also adapted in human-robot collaboration. In detail they 
are: 

• Communication represents the basis of how participants understand 
each other, involving verbal and non-verbal, formal and informal 
exchanges using a variety of methods [82]. In human-robot collab
oration, this dimension not only includes verbal and gestural ex
changes, but it embeds a comprehensive understanding and 
prediction of mutual intents and actions. This concept has already 
been addressed in Section 3.3 due to its closeness with interaction 
complexity.

• Coordination includes setting common goals, managing and inte
grating people and information, distributing tasks and providing 
feedback on performance [82]. In collaborative processes, coordi
nation requires the precise allocation and synchronisation of tasks 
between humans and robots.

• Decision-making refers to cognitive processes that guide the selec
tion of actions among alternatives, focusing on who makes decisions 
and how [82]. In the context of human-robot collaboration, 
decision-making is a complex process that requires robot’s auton
omy, whereby robots can make independent decisions within set 
parameters, and human oversight, to manage unexpected situations 
and ensure safety.

• Learning refers to opportunities for both formal and informal 
learning arising from collaboration that enable individuals to 
improve their skills and knowledge [82]. In human-robot collabo
ration, both humans and robots are learners who should mutually 
adapt to varying task demands and environmental conditions.

Furthermore, in collaborative processes, the closeness of the robot 
may increase the cognitive effort of the human operator, and thus the 
collaboration complexity. In the context of human-robot collaboration, 
an understanding of the proxemics of cobots, i.e., how physical space is 
shared and navigated, is of crucial importance. In this regard, the sig
nificant impact on human stress of the close presence of a cobot has been 
proved by several studies [86–88]. The premise is that the longer a robot 
works in close proximity to a human, the greater the potential stress on 
the human worker, requiring more complex coordination [88]. Indeed, 
the increased presence of the robot in the human’s personal space could 
affect the psychological comfort and operational focus of the human 
worker. Studies on human proxemics were firstly performed by Hall 
[89] who identified four primary interpersonal distances commonly 
used to structure physical space in human interactions. These zones are 
designed to reflect different levels of intimacy and social interaction: 

• Intimate distance: Ranging from direct contact to about 45 cm, this 
zone is reserved for those with whom one is very close, such as family 
members or close friends. Interactions within this zone typically 
involve personal or comforting gestures.

• Personal distance: Ranging from 0.5 to 1.2 m, personal distance al
lows for interactions that are more personal in nature but still 
maintain a boundary that provides a sense of space. It is the space 
used for conversations with friends and some group discussions.

• Social distance: Ranging from about 1.2 to 3.6 m, social distance is 
appropriate for interactions among acquaintances or within a pro
fessional setting. This space is used for interactions that require more 
formal boundaries and is typical of the workplace or social 
gatherings.

• Public Distance: Beyond 3.6 m, public distance is used for speeches, 
lectures and theatre; essentially any situation where one or a few 
people are addressing a larger group. This distance helps the speaker 
maintain a detached or more formal relationship with the audience.

In collaborative assembly task robot often invades human’s intimate 
area. Such invasion can cause discomfort, anxiety or stress. The intimate 
zone is typically reserved for close personal contact and when this space 
is invaded by an unfamiliar entity, such as a robot, it can trigger a 
defensive response, often referred to as a personal space invasion, 
reducing the effectiveness of the interaction and potentially the quality 
of process [86,90,91]. In light of this, as a first proxy to quantify 
collaboration complexity the authors propose an indicator, called Time 
of Collaboration Ratio, based on the time that humans and robots spend 
together in the same workspace. The idea behind this indicator is that 
the time humans and robots spend working together can be linked to the 
four factors of collaborative work identified by Patel et al. [82]. 
Increased collaboration time indeed necessitates greater mutual 
learning, as both humans and robots must adapt and optimize their 

Fig. 3. Task allocation chart of the assembly process (cycle time Tc = 60 s).
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behaviour based on shared actions. Additionally, longer collaboration 
duration may lead to more frequent decision-making instances, where 
decisions made by one agent directly impact the operations of the other. 
Finally, extended collaboration time requires enhanced coordination 
and communication to ensure the assembly process is completed effi
ciently. While it is acknowledged that using time as a proxy may over
simplify the concept of collaboration complexity, it serves as a 
preliminary attempt to provide a quantitative and practical indicator for 
such a broad concept.

3.4.1. Time of collaboration ratio
Time of Collaboration Ratio, henceforth referred as “ToCR”, is an 

indicator introduced as first attempt to quantify collaboration 
complexity. This indicator is based on the idea that collaboration can be 
measured by the time humans and robots co-occupy the same work area. 
In line with the model proposed by Patel et al. [82], this metric reflects 
the need for continuous communication and adaptation as both parties 
work towards a common goal in a shared workspace, and also illustrates 
the link between shared physical presence and the contextual greater 
stress and cognitive effort induced by the presence of a robot in the 
human’s intimate area. ToCR can be expressed as follows: 

ToCR =
TH+R

TC
(2) 

where: 

• TH+R represents the time when the robot moves in the human 
worker’s intimate area.

• TC represents the total completion time of the collaborative assembly 
process.

The mathematical codomain of this indicator ranges from 0 to 1, 
where 0 represents a process where the human operator never shares the 
intimate space with the robot, and 1 represents a process in which all the 
robot’s movements occur within the human’s intimate space. Suppose to 
compute ToCR for the same example presented in Section 3.3.1 (see 
Table 1). Fig. 4 shows the same chart of the previous example (see 
Fig. 3), but with the additional information on the time robot operates in 
human’s intimate area.

In this case, the sum of all the time intervals in which the robot 
moves within human worker’s intimate area is TH+R = 2 s + 4 s + 7 s =
13 s. Given that the total completion time (i.e., Tc) is 60 s, the time of 
collaboration ratio is ToCR = TH+R

TC
= 0.22. A low "Time of Collaboration 

Ratio" could indicate a more isolated operation, where the robot and 

human work independently rather than interdependently. Conversely, a 
higher value of this metric indicates a greater presence of the robot in 
the human’s intimate area during task performance. From an ergonomic 
and safety perspective, it potentially correlates with the psychological 
and physical stress levels experienced by the human worker. The closer 
and more frequent the robot’s movements are to the human, the more 
likely it is to affect the worker’s comfort and concentration, potentially 
increasing stress levels. However, at the same time this ratio could serve 
as a key indicator of the efficiency and quality of collaboration. A higher 
ratio indicates that the robot is very active in assisting tasks that require 
close cooperation, which could be seen as a positive attribute in sce
narios where robot assistance is critical for task efficiency.

4. A proposal for a structured collaborative assembly 
complexity model

In this section, a preliminary quantitative methodology to assess 
collaborative assembly complexity will be presented. With reference to 
Fig. 2, the authors hypothesized that collaborative assembly complexity 
(i.e., CHRC) can be obtained from four separate contributes: (i) product 
complexity; (ii) assembly complexity, (iii) interaction complexity and 
(iv) collaboration complexity. In this regard, it was decided to use the 
Samy and ElMaraghy’s method [16] as a basis for the formulation of the 
C–HRC model. The model by Samy and ElMaraghy was originally 
formulated as follows to specifically assess product assembly complexity 
(Cproduct): 

Cproduct =

[
np

Np
+CIproduct

]

log2
(
Np +1

)
+

[
ns

Ns

]

log2(Ns +1) (3) 

where: 

• 1 ≤ np ≤ Np, np is the number of unique parts and Np is the total 
number of parts.

• 1 ≤ ns ≤ Ns, nS is the number of unique fasteners and Ns is the total 
number of fasteners.

• CIproduct ∈ [0;1] is a complexity index related to geometrical and 
dimensional features of components and thus it accounts for product 
complexity. The calculation of this index is based on the Design for 
Assembly tables (see Appendix A and B). These tables present 
different handling and joining difficulty factors depending on 
whether the assembly is carried out by a human or a robot [16].

Specifically, according to Samy and ElMaraghy [16], CIproduct can be 
computed as follows: 

Fig. 4. Task allocation chart of the assembly process and the times humans and robot work in the human’s intimate space (i.e., TH+R).
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• Calculation of average handling factor Ch =

∑J
1
Ch,f

J and average 

insertion factor Ci =

∑K
1
Ci,f

K for each part. The values proposed by 
Samy and ElMaraghy are provided in Appendix A and B. J and K 
represent respectively the number of handling and insertion features 
(to which specific difficulty factors correspond) that can be attrib
uted to the part under assessment.

• Aggregation of handling and insertion factors through a weighted 
average: 

Cpart =
Ch

∑J
1Ch,f + Ci

∑K
1 Ci,f

∑j
1Ch,f +

∑K
1 Ci,f

(4) 

• Computation of CIproduct =
∑n

p=1 xpCpart where xp is the percentage 
share of dissimilar parts.

Inspired by the model proposed by Samy and ElMaraghy, the authors 
decided to extend Eq. (3) with two novel contributions that account for 
interaction complexity and collaboration complexity, respectively. 
Thus, the C–HRC model can be expressed as follows: 

CHRC =

[
np

Np
+CIproduct

]

log2
(
Np +1

)
+

[
ns

Ns

]

log2(Ns +1)

+

[
nrs

Nt

]

log2(Nt +1) +
TH+R

Tc
log2(Nc +1) (5) 

Where the first two terms, 
[

np
Np

+ CIproduct

]

log2
(
Np + 1

)
+

[
ns
Ns

]

log2(Ns + 1), are the same defined in Eq. (3), and: 

• nrs
Nt 

is the DoIR indicator presented in Section 3.3.1, with nrs is the 
number of role switching between human and robot while Nt is the 
number of elementary tasks of the assembly process.

•
TH+R

Tc 
is the ToCR indicator presented in Section 3.4.1, where TH+R 

represents the time when the robot moves in the human worker’s 
intimate area and TC represents the total completion time of the 
collaborative assembly process.

• Nc is the number of robot’s elementary tasks performed completely 
or partially in the human’s work-area.

The original model, derived from the concept of information entropy 
[42], was based on the idea that greater variety in parts and fasteners 
increases the cognitive effort required by operators to successfully 
complete the assembly process. Consequently, higher variety may lead 
to greater difficulties and potential failures during the process. Simi

larly, the third term of Eq. (5) (
[

nrs
Nt

]

log2(Nt + 1)), added to encompass 

the dynamics of human-robot interaction, was also inspired by entropic 
models. This term increases as the DoIR increases, reflecting the notion 
that more frequent role-switching between humans and robots leads to 
greater interaction complexity, and therefore, higher collaborative as
sembly complexity. High values of nrs suggest more dynamic and 
potentially unpredictable interaction patterns, contributing to increased 
complexity.

In parallel, the fourth term of the equation increases as the ToCR 
increases. More time spent in close proximity requires greater effort 
from the human to coordinate and collaborate with the robot. Therefore, 
this model captures the concept that more frequent switching and pro
longed time in the same workspace contribute to the overall complexity 
of the assembly process. Furthermore, this approach ensures that the 
new terms are mathematically consistent with the basic elements pro
posed by Samy and ElMaraghy, effectively extending the model to 
include interaction and collaboration complexity. The use of entropic 

models thus provides a quantitative value to express the increase in 
complexity due to variability and uncertainty in human-robot collabo
ration.

5. Model implementation: a small case study

In this section, the C–HRC model is applied to three different 
products: (i) a mechanical equipment, (ii) a skateboard and (iii) a dia
phragm water pump. The aim of this case-study consists of providing a 
practical application of this model to real products (see Fig. 5). The list 
and quantities of parts and screws are detailed respectively in Table 2,3 
and 4. The selection of these products is driven by their differences in 
geometrical characteristics, the number of components, and component 
variety, which result in varying levels of assembly complexity (Samy and 
ElMaraghy, 2010). Specifically, excluding fasteners, the mechanical 
equipment consists of only 4 components; the skateboard has 19 com
ponents, but only 9 different types; and the diaphragm water pump 
comprises 13 components, with 12 different types.

The assembly workstation is composed of a collaborative robot UR3 
of the Mind4Lab Laboratory at Politecnico di Torino and a feeding tray 
used to place the parts of the products. The human operator works on the 
right-side of the table, i.e. “human’s work area” (see Fig. 6). As previ
ously mentioned, to compute the Time of Collaboration Ratio it is 
necessary to consider all the movements the robot makes within the 
human’s intimate area, which can be schematized as a sphere with a 
radius of 45 cm. For practical purposes, it was hypothesized that the 
human’s work area—measuring 50 cm by 60 cm, as illustrated in 
Fig. 6b—represents the “intimate area.” In this space, humans and ro
bots work closely together, necessitating coordination and adaptation, 
which increases the cognitive effort required from the operator. 
Consequently, all robot movements within this area were considered for 
the ToCR calculation.

The detailed list of all the elementary tasks to assemble the three 
reference products and the related task allocation and assembly times 
are presented in Appendix C.

The calculation of CHRC includes the following steps: 

• Calculation of CIproduct : in computing CIproduct , both manual and 
automatic assembly difficulty factors were used, depending on the 
agent handling or joining the specific part (see task allocation of 
appendix C - Tables 8,9,10). This approach is different from the one 
originally proposed, but it is essential as in a collaborative scenario 
some parts are handled/joined by human and others by the robot. 
For those part handled/joined by the human operator, difficulty 
factors for manual assembly were considered (see Appendix A) while 
for those handled/joined by the robot, difficulty factors for auto
matic assembly were used (see Appendix B). Hence, using Eq. (4) and 
the difficulty factors derived from Design for Assembly of Appendix 
A and B [16], the respective values for the three products can be 
obtained: 

CIproduct, mechanical equipment = 0.697 (6) 

CIproduct, skateboard = 0.709 (7) 

CIproduct, pump = 0.713 (8) 

• Calculation of DoIR: Using Eq. (1), the value of DoIR is: 

DoIRmechanical equipment =
nrs

Nt
=

6
8
= 0.75 (9) 

DoIRskateboard =
nrs

Nt
=

15
46

= 0.326 (10) 
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Fig. 5. (a) mechanical equipment, (b) skateboard and (c) diaphragm water pump. The final assembled products are on the left side and the related parts and screws 
on the right side.
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DoIRpump =
nrs

Nt
=

7
19

= 0.368 (11) 

• Calculation of ToCR: Using Eq. (2), the three values of ToCR (and 
related Nc) are: 

ToCRmechanical equipment =
TH+R

Tc
=

34
125

= 0.272 (Nc =5) (12) 

ToCRskateboard =
TH+R

Tc
=

103
622

= 0.166 (Nc =11) (13) 

ToCRpump =
TH+R

Tc
=

27
376

= 0.0718 (Nc =5) (14) 

• Calculation of CHRC: Considering the respective values of np, Np, ns,

Ns and CIproduct (see Table 5) the resulting value of CHRC of the three 
reference products are: 

CHRCmechanical equipment =

(
3
4
+0.697

)

log2(4+1) +
2
6
log2(6+1)

+
6
8
log2(8+1) +

34
125

log2(5+1)

= 7.38 (15) 

CHRCskateboard =

(
9
19

+0.709
)

log2(19+1) +
3
14

log2(14+ 1)

+
15
46

log2(46+1) +
103
622

log2(11+1)

= 8.35 (16) 

CHRCpump =

(
12
13

+ 0.713
)

log2(13+1) +
4
13

log2(13+ 1)

+
7
19

log2(19+1) +
27
376

log2(5+ 1)

= 9.18 (17) 

With reference to Fig. 7, it is important to note that the first two 
terms provide a baseline value for product assembly complexity, to 
which the contributions of interaction complexity and collaboration 
complexity are added. These increases are attributed to the additional 
cognitive effort required from the human operator to effectively 
communicate, coordinate, and work closely with the robot. Interaction 
complexity indicates that integrating robot collaboration into the as
sembly process introduces a layer of complexity that demands greater 
cognitive involvement from the human operator. As the number of role- 

Table 2 
List of parts and quantities of the mechanical equipment (see Fig. 5-a).

Part name Part code Quantity

Base Base 1
Elliptical flange EF1/EF2 2
Square flange SF 1
Bolt type 1 B1 4
Bolt type 2 B2 2
Total (parts + fasteners) ​ 10

Table 3 
List of parts and quantities of the skateboard (see Fig. 5-b).

Part name Part code Quantity

Base TV 1
Big rubber ring GOG 2
Small rubber ring GOP 2
Big metallic ring PMG 2
Small metallic ring PMP 2
Bolt type 1 (screw + nut) BL1+DD1 2
Base plate BP 2
Pivot cup PC 2
Hanger HNG 2
Bolt type 2 (screw + nut) BL2+DD2 8
Bolt type 3 (nut + washer) DD3+RD 4
Wheel RT 4
Total (parts + fasteners) ​ 33

Table 4 
List of parts and quantities of the diaphragm water pump (see Fig. 5-c).

Part name Part code Quantity

Engine block EB 1
Rubber feet RF 1
Ring R 1
Flange 1 F1 1
Flange 2 F2 1
Diaphragm D1 1
Cover with valves CV 1
Cover C 1
Pressure switch PS 1
Pressure switch diaphragm D2 1
Filter FIL 1
Flow adapter AF1/AF2 2
Screws type 1 V1 2
Screws type 2 V2 6
Screws type 3 V3 3
Screws type 4 V4 2
Total (parts + fasteners) ​ 26

Fig. 6. Assembly work-station layout (a) and the real workstation at the Mind4Lab laboratory at Politecnico di Torino (b).
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switching instances increases, so does the interaction complexity. It is 
interesting that in this example the greatest share of interaction 
complexity occurs with the simplest assembly process, i.e., the me
chanical equipment. Indeed, neglecting the contribution of interaction 
and collaboration complexity, the assembly complexity of the three 
products, computed using Eq. (3), would be: Cmechanical equipment = 4.3, 
Cskateboard = 5.95 and Cpump = 7.4. In the assembly process of the me
chanical equipment, in fact, although there are only a few tasks to be 
performed, the interactions between human and robot are very frequent 
(DoIR = 0.75) and the human will therefore have to communicate more 
often with the robot to complete the assembly, increasing the cognitive 
effort required. Moreover, the share of collaboration complexity is also 
higher in this case, given that for 34 s out of a total completion time of 
125 s human and robot work in close contact. This result is also 
reasonable, as there are frequent interactions and the human will have 
to co-ordinate more often with the robot and thus work more closely 
together. As far as the skateboard is concerned, interactions between 
humans and robots are less frequent DoIR = 0.326, thus leading to a 
decrease in the complexity of interaction and even collaboration, given 
the less time spent in close contact. Finally, for the diaphragm water 
pump, it is worth noting the low value of the collaboration complexity 
(ToCR = 0.0718). This is mainly due to both the fact that human and 
robot work in considerable autonomy, thus reducing the time both are 
together in the human’s work area, and from the fact that the longest 
assembly tasks are carried out exclusively by the human operator. This 
reduces the share of TH+R in relation to Tc. In all three cases, however, it 
can be seen that the largest share remains that of product assembly 
complexity to which the two new contributions are added.

Obviously, this case study serves only as an initial demonstration of 
the model’s applicability in real collaborative assembly processes. For a 
more structured validation, future steps will involve conducting addi
tional experiments across a broader range of scenarios and settings to 
rigorously test and refine the model’s effectiveness and reliability.

5.1. Preliminary sensitivity analysis of the C–HRC model

In this section, a preliminary sensitivity analysis of the proposed 
C–HRC model is conducted, using the mechanical equipment as a 
reference. Modifications were made to the task allocation and associated 
collaboration times to observe their impact on the overall C–HRC 
values. This analysis is crucial for understanding the model’s respon
siveness to changes in operational parameters. For example, consider 
that the elementary tasks outlined in Appendix C are rearranged as 
shown in Table 6.

In this case, the number of role switching is reduced (nrs = 2), given 
that the pick and place activities are performed by the robot at the 
beginning of the process. Once all the parts have been placed, the 
operator performs all the screwing activities and, once finished, in
teracts by sending a command to the robot to pick up the final product. 
Therefore, the value of the interaction complexity is lowered consider
ably as DoIR = 2

8 = 0.25 leading to a lower C∗
HRCmechanical equipment

= 5.79. On 
the other hand, ToCR remains constant since the robot’s movements 
take place in the human’s work area anyway, which could generate 
discomfort situations for the operator.

Now, suppose the original task allocation is maintained, but with the 
new times shown in Table 7.

In this situation the robot performs all the pick and place activities 
out of the human’s work-area, except for the picking up of the final 
product. In this case the share of collaboration complexity is almost 
negligible, since ToCR = 0.048, while the interaction complexity re
mains constant as DoIR = 0.75 leading to CH́RCmechanical equipment

= 6.8. This 
case refers to processes where, although human and robot often interact, 
they work most of the time in sufficiently separated spaces not to induce 
discomfort or stress in the human operator. The sensitivity analysis 
showed that the C–HRC model is highly sensitive on how tasks are 
allocated within the assembly process between human and robot. 
Especially, these findings can be used by process designers to iteratively 
change task allocation to optimise complexity and promote efficient 
human-robot collaboration in collaborative assembly processes.

6. Conclusions

This paper presents a novel contribution to the field of collaborative 
robotics in assembly processes by introducing a comprehensive con
ceptual framework for assessing collaborative assembly complexity. 
Traditional assembly complexity assessment methods are not suitable 

Table 5 
Overview of all the model parameters for each reference product.

Product CIproduct np Np ns Ns nrs Nt TH+R 

[s]
Tc 

[s]
Nc CHRC

Mechanical equipment 0.697 3 4 2 6 6 8 34 125 5 7.38
Skateboard 0.709 9 19 3 14 15 46 103 622 11 8.35
Diaphragm water pump 0.713 12 13 4 13 7 19 27 376 5 9.18

Fig. 7. Comparison of the C–HRC results for the three products.

Table 6 
New task allocation for the mechanical equipment.

ID Elementary task Allocation 
(H for human and 
R for robot)

Time 
[s]

TH+R [s]

A1 Pick and place BASE R 8 4
A2 Pick and place EF1 R 10 8
A4 Pick and place SF R 12 11
A6 Pick and place EF2 R 8 5
A3 Screwing EF1 with Base H 22 ​
A5 Screwing SF with Base H 25 ​
A7 Screwing EF2 with Base H 30 ​
A8 Pick the final product and place 

out of the assembly area
R 10 6
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for collaborative assembly processes, since they fail to take into account 
the interaction dynamics among different agents, which in this case are 
humans and robots. This framework not only formalizes the parameters 
that influence collaborative assemblies but also integrates them into a 
cohesive structure, incorporating two novel proxies: “interaction 
complexity” and “collaboration complexity.” This framework is essential 
for understanding how various elements of assembly tasks impact 
overall system performance. The quantitative formulation of the 
C–HRC model is inspired by the assembly complexity model proposed 
by Samy and El-Maraghy [16], which has proven highly effective across 
a wide range of manufacturing applications. The results obtained with 
C–HRC model align with expectations, as they show that the 
complexity of collaboration and interaction adds additional layers to the 
product assembly complexity. This finding is consistent with observa
tions collected in previous experimental campaigns where, while 
workers often recognise the assistance provided by collaborative robots, 
they also experienced increased cognitive effort due to the need to 
co-exist and coordinate with robots. Therefore, the C–HRC model offers 
a practical tool for process designers involved in the ex-ante design of 
workstations. By employing this approach, designers can proactively 
identify areas where higher cognitive efforts may be required, thus 
leading to greater occurrence of errors. In this way, designers can 
enhance the quality of manufacturing processes through more effective 
task allocation and optimized layout designs. This proactive approach in 
workstation design can lead to significant improvements in the ergo
nomic and operational aspects of manufacturing systems, facilitating 
more integrated and effective human-robot collaborations.

7. Future work

While the contributions of the C–HRC model are novel and prom
ising, they also underscore some limitations of the current approach. 
First, experimental validation across different products and large oper
ator samples is essential to ensure the model’s generalizability and ac
curacy. The case study presented serves only as an initial test of the 
model’s applicability in real-world contexts; however, a broader range 
of products and related experiments are necessary for thorough valida
tion. Indeed, larger studies could provide additional insights into the 
scalability and adaptability of the model. Furthermore, a major limita
tion is the static nature of the model, as it does not take into account the 
influence of time and learning on collaborative assembly complexity. 
Over time, operators may adapt to the presence of collaborative robots, 
improving coordination and reducing the perceived effort required to 
interact with them.

Secondly, it is important to note that this model integrates four 
distinct terms, each contributing to the overall complexity value. 

However, this summation can lead to compensation issues, where higher 
values in one term may offset lower values in others, potentially 
resulting in equivalent complexity values in scenarios that are signifi
cantly different [45,92]. In addition, future work could focus on 
developing new metrics to complement or extend the existing frame
work to ensure that it remains relevant and comprehensive in addressing 
the HRC assembly complexity. As a future development, it is possible to 
automate the calculation of the C–HRC model value, thereby stream
lining the process. This could potentially be integrated into task allo
cation algorithms aimed at reducing the complexity of HRC assembly.

Third, while the results obtained are consistent with expectations 
based on previous observations, their generalisability remains limited. 
The lack of comparative studies or parallel research using alternative 
models limits the ability to compare the findings. Future work should 
explore how differences in product complexity might vary if other 
models or frameworks were used. Moreover, the choice of the layers 
included in the model, although based on previous research and 
empirical evidence, may not fully capture the nature of collaborative 
assembly complexity. In this regard, future research should also focus on 
investigating additional factors that could further refine the accuracy of 
the model.

Finally, future research will also focus on a detailed analysis of how 
well the C–HRC model correlates with process failures and perceived 
workload. Since both of these factors are recognized as effects of as
sembly complexity, establishing a relationship with them will enhance 
the robustness of the C–HRC model. Additionally, investigating the 
relationship between the C–HRC model and perceived complexity will 
provide valuable insights into how these aspects are interconnected. 
Concurrently, future studies may also involve the development of a scale 
of collaborative assembly complexity based on the proposed model. This 
scale could be instrumental in identifying and prioritizing processes 
where failures are more likely to occur, ultimately leading to improve
ments in collaborative assembly.
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Table 7 
Modified task allocation and the new collaboration times of the mechanical 
equipment.

ID Elementary task Allocation 
(H for human and 
R for robot)

Time 
[s]

TH+R [s]

1 Pick and place BASE R 8 ​
2 Pick and place EF1 R 10 ​
3 Screwing EF1 with Base H 22 ​
4 Pick and place SF R 12 ​
5 Screwing SF with Base H 25 ​
6 Pick and place EF2 R 8 ​
7 Screwing EF2 with Base H 30 ​
8 Pick the final product and place 

out of the assembly area
R 10 6
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Appendix A. Assembly attributes and difficulty factors for manual assembly [16]

Group Attribute Description Average difficulty factor, Cf

Handling attributes Symmetry (α + β) α + β < 360 0.70
​ 360 ≤ α + β < 540 0.84
​ 540 ≤ α + β < 720 0.94
​ α + β = 720 1.00
Size > 15 mm 0.74
​ 6 mm ≤ size ≤ 15 mm 0.81
​ < 6 mm 1
Thickness > 2 mm 0.27
​ 0.25 mm < size ≤ 2 mm 0.5
​ ≤ 0.25 mm 1
Weight < 10 lb (light) 0.5
​ > 10 lb 1
Grasping and manipulation Easy to grasp and manipulate 0.91
​ Not easy to grasp and manipulate 1
Assistance Using one hand 0.34
​ Using one hand with grasping aids 1
​ Using two hands 0.75
​ Using two hands with assistance 0.57
Nesting and tangling Parts do not severely nest or tangle and are not flexible 0.58
​ Parts severely nest or tangle or are flexible 1
Optical magnification Not necessary 0.8
​ Necessary 1

Insertion attributes Holding down Not required 0.54
​ Required 1
Alignment Easy to align or position 0.86
​ Not easy to align or position 1
Insertion resistance No resistance 0.87
​ Resistance to insertion 1
Accessibility and vision No restrictions 0.57
​ Obstructed access or restricted vision 0.81
​ Obstructed access and restricted vision 1
Mechanical fastening processes Bending 0.34
​ Riveting 0.58
​ Screw tightening 0.42
​ Bulk plastic deformation 1
Non-mechanical fastening processes No additional material required 0.58
​ Soldering processes 0.67
​ Chemical processes 1
Non-fastening processes Manipulation of parts or sub-assemblies (fitting or adjusting of parts, …) 0.75
​ Other processes (liquid insertion, …) 1

Appendix B. - Assembly attributes and difficulty factors for automatic assembly [16]

Group Feature Feature description Average Difficulty factor, Cf

Handling attributes Symmetry Rotational part ​
​ α symmetric and β symmetric 0.45
​ β symmetric only 0.66
​ α symmetric only 0.77
​ No symmetry 1
​ Non-rotational part ​
​ 180◦ symmetry about three axes 0.6
​ 180◦ symmetry about one axis only 0.77
​ No symmetry 1
Flexibility Non-flexible 0.67
​ Flexible 1
Delicateness Non-delicate 0.8
​ Delicate 1
Stickiness Not sticky 0.8
​ Sticky 1
Tangling/nesting Not tangle/nest 0.8
​ Tangle/nest 1

Insertion attributes Holding down after insertion Not required 0.75
​ Required 1
Insertion resistance Does not exist 0.67
​ Exists 1
Alignment and positioning Easy 0.67
​ Not easy 1
Mechanical fastening methods Screwing or other processes 0.5
​ Riveting or similar processes 0.56
​ Bending or similar processes 1
Non-mechanical fastening methods Chemical processes 0.67

(continued on next page)
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(continued )

Group Feature Feature description Average Difficulty factor, Cf

​ Additional material required 0.92
​ No addition of material (friction, …) 1
Insertion direction Straight line from above 0.5
​ Straight line not from above 0.54
​ Not straight line insertion 1

Appendix C. List and times of the elementary task of the collaborative assembly processes

Table 8 
List of elementary tasks and the related allocations and times for the mechanical equipment (see Fig. 4a).

ID Elementary task Allocation 
(H for human and R for robot)

Time [s] TH+R [s]

1 Pick and place BASE R 8 4
2 Pick and place EF1 R 10 8
3 Screwing EF1 with Base H 22 ​
4 Pick and place SF R 12 11
5 Screwing SF with Base H 25 ​
6 Pick and place EF2 R 8 5
7 Screwing EF2 with Base H 30 ​
8 Pick the final product and place out of the assembly area R 10 6

Table 9 
List of elementary tasks and the related allocations and times for the skateboard (see Fig. 4b).

ID Elementary task Allocation 
(H for human and R for robot)

Time [s] TH+R [s]

1 Pick and place BP R 10 8
2 Pick and place BL1 in BP H 6 ​
3 pick PMG and GOG H 5 ​
4 Insert PMG, GOG on BL1 H 13 ​
5 Assembly PC and HNG H 4 ​
6 Insert HNG on BP H 6 ​
7 Pick and place PMP and GOP H 14 ​
8 Pick and place DD1 H 3 ​
9 screwing DD1 on BL1 H 6 ​
10 Pick and place semi-assembly out of the work area R 9 7
11 Pick and place BP R 10 8
12 Pick and place BL1 in BP H 6 ​
13 pick PMG and GOG H 5 ​
14 Insert PMG, GOG on BL1 H 13 ​
15 Assembly PC and HNG H 4 ​
16 Insert HNG on BP H 6 ​
17 Pick and place PMP and GOP H 14 ​
18 Pick and place DD1 H 3 ​
19 screwing DD1 on BL1 H 6 ​
20 Pick and place semi-assembly out of the work area R 9 7
21 Pick TV R 18 14
22 Place truck on TV H 6 ​
23 Pick and place bl2 H 36 ​
24 Screwing DD2 on BL2 H 84 ​
25 Rotate TV R 11 8
26 Place truck on TV H 6 ​
27 Pick and place bl2 H 36 ​
28 Screwing DD2 on BL2 H 84 ​
29 Pick and place assembly supports H 10 ​
30 Pick TV on bases R 11 11
31 pick RT R 14 10
32 Insert RT on axis H 8 ​
33 Pick and place DD3 and RD h 3 ​
34 screwing DD3 on axis H 17 ​
35 pick RT R 14 10
36 Insert RT on axis H 8 ​
37 Insert RD H 3 ​
38 screwing DD3 on axis H 17 ​
39 pick RT R 14 10
40 Insert RT on axis H 8 ​

(continued on next page)
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Table 9 (continued )

ID Elementary task Allocation 
(H for human and R for robot) 

Time [s] TH+R [s]

41 Insert RD H 3 ​
42 screwing DD3 on axis H 17 ​
43 pick RT R 14 10
44 Insert RT on axis H 8 ​
45 Insert RD H 3 ​
46 screwing DD3 on axis H 17 ​

Table 10 
List of elementary tasks and the related allocations and times for the diaphragm water pump (see Fig. 4c).

ID Elementary task Allocation 
(H for human and R for robot)

Time [s] TH+R [s]

A1 Pick and place RF H 3 ​
A2 Pick and place EB R 10 8
A3 Screwing EB with RF H 46 ​
A4 Pick and place F1 R 5 4
A5 Pick and place F2 R 5 4
A6 Insert F1 in F2 H 6 ​
A7 Pick and place D1 on sub-assembly F1+F2 H 4 ​
A8 Screwing D1, F1 and insert CV on D1 H 67 ​
A9 Pick and place C R 5 4
A10 Screwing C and F2 H 43 ​
A11 Insert R on EB H 9 ​
A12 Insert and screwing sub-assembly pump head on EB (joining F1-EB) H 60 ​
A13 Pick and place D2 and PS on C H 19 ​
A14 Screwing PS and C H 48 ​
A15 Pick and place FIL H 4 ​
A16 Screwing FIL H 6 ​
A17 Pick and place AF1 and AF2 H 8 ​
A18 Screwing AF1 and AF2 H 18 ​
A19 Pick the final product and place out of the assembly area R 10 7

Data availability

No data was used for the research described in the article.
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